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We present an efficient method for Monte Carlo simulations of diffusion-reaction processes. Introduced by
us in a previous paper �Phys. Rev. Lett. 97, 230602 �2006��, our algorithm skips the traditional small diffusion
hops and propagates the diffusing particles over long distances through a sequence of superhops, one particle
at a time. By partitioning the simulation space into nonoverlapping protecting domains each containing only
one or two particles, the algorithm factorizes the N-body problem of collisions among multiple Brownian
particles into a set of much simpler single-body and two-body problems. Efficient propagation of particles
inside their protective domains is enabled through the use of time-dependent Green’s functions �propagators�
obtained as solutions for the first-passage statistics of random walks. The resulting Monte Carlo algorithm is
event-driven and asynchronous; each Brownian particle propagates inside its own protective domain and on its
own time clock. The algorithm reproduces the statistics of the underlying Monte Carlo model exactly. Exten-
sive numerical examples demonstrate that for an important class of diffusion-reaction models the algorithm is
efficient at low particle densities, where other existing algorithms slow down severely.

DOI: 10.1103/PhysRevE.80.066701 PACS number�s�: 05.10.Ln

I. INTRODUCTION

Models in which the overall dynamics is represented by
random walks are widely applied in science, engineering,
medicine and finance. Probably the simplest example of a
random walk is a sequence of steps taken randomly in two
directions—left or right—along a line in one dimension. The
object whose displacements follow such a sequence is re-
ferred to as a random walker or, simply, a walker. Of particu-
lar interest are diffusion-reaction systems in which multiple
walkers walk simultaneously and independently and some
significant events take place when two or more walkers find
each other in space, or collide. Examples include formation
and growth of aggregates of colloidal particles in suspen-
sions, kinetics of aerosols in meteorology, diffusive phase
transformations in solids �1�, surface diffusion during crystal
growth from vapor �2,3�, defect evolution in solids �4,5�,
multiparticle diffusion-limited aggregation in physics,
diffusion-controlled reactions in chemistry and biochemistry
�6–8�, population dynamics, quantum physics �9�, and risk
assessment and pricing models in finance to name a few.
Numerical simulations of such processes often utilize various
flavors of the Monte Carlo method.

Kinetic Monte Carlo �KMC� is a simple and robust com-
putational approach for simulations of systems evolving
through random walks. Mathematically, KMC derives from
the theory of Markov processes in which the model evolves
from state to state through a sequence of stochastic transi-
tions whose rates depend on the current state alone. Random
walks are typically simulated as sequences of hops, either
from one lattice site to a neighboring one for discrete walks,
or through finite displacements for continuum walks. When
the system dynamics is defined by collisions among the
walkers, the hops themselves are trivial changes of the sys-
tem’s state while significant events take place only when the
walkers collide. A serious computational bottleneck is pre-

sented for the KMC method by situations when the density
of walkers is low. Consider a system of randomly distributed
walkers. It takes on average �L3 hops for a walker to collide
with another in 3d space �Here, L is the average spacing
between the walkers expressed in the units of the lattice
spacing or, in the continuum case, in the units of particle
diameter�. When L is large, it can take a great number of
KMC cycles to evolve the model to a meaningful event, a
collision. This is a serious drawback limiting applicability of
the KMC method to diffusion-reaction simulations.

Several attempts have been made so far to overcome this
notorious inefficiency in KMC simulations. In �7�, the
equivalence between continuous random walks and diffusion
is exploited by using the fundamental solution for the single-
particle diffusion to propagate the walkers over large dis-
tances. The JERK method �10� uses a known solution for the
statistics of binary collisions between two diffusing particles
to decide which of the N�N−1� /2 pairs of walkers should
collide over the next time step1. These and similar methods
achieve improvements in the efficiency of KMC simulations
but at a cost of their accuracy. The fundamental difficulty
that none of the mentioned methods can fully address is that
statistics of collisions in the system of N walkers is an
N-body problem. That is, the probability of collisions be-
tween, say, walkers 1 and 2, depends on all other N−2 walk-
ers in the system. It is only in the limit of very small hops �in
�7�� or vanishing time steps �in �10�� that such approximate
methods become asymptotically exact. Unfortunately, in this
same limit the mentioned methods lose their numerical effi-
ciency.

Here we present an approach for KMC simulations that is
both efficient and exact for a wide class of models involving

1It was in fact the JERK method and its applications to modeling
irradiated materials that inspired the key idea of the algorithm pre-
sented in this paper.
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collisions among multiple Brownian particles, as first pro-
posed in Ref. �11�. Based on exact solutions for the first-
passage statistics of random walks, our method is referred to
as first-passage kinetic Monte Carlo �FPKMC� in the follow-
ing. In the algorithm, rather than propagating the particles to
collisions by small diffusional hops, the particles are propa-
gated over long distances while each walker �particle� is pro-
tected �separated from interference by other walkers� within
its own spatial region. The N regions are nonoverlapping and
partition the space into disjoint spatial domains in which the
enclosed walkers are propagated individually. The use of
first-passage statistics for walker propagation permits an el-
egant factorization of the N-body problem into a product of
N single-body problems. Efficient implementation of the
method leads to an asynchronous event-driven algorithm
�12� in which every walker propagates within its personal
space and from its own time origin. The resulting speedup is
most impressive when the density of diffusing particles is
low and particle collisions are rare.

In this paper we introduce the basic theory of the FPKMC
method and present a few simple but representative simula-
tion tests on the method’s accuracy and efficiency. The paper
is organized as follows. The next section introduces the basic
ideas behind the new method using one-dimensional �1D�
continuous random walks as a simple example. Section III
describes the overall algorithm. In Sec. IV we focus on
propagators, i.e., elementary solutions for first-passage statis-
tics required for efficient propagation of multiple walkers to
collisions, and describe extensions of the FPKMC algorithm
to higher dimensions. Section V presents several computa-
tional experiments validating the new method’s accuracy and
efficiency. The results are summarized in Sec. VI. Appendix
A describes a rejection sampling procedure used in the FP-
KMC algorithm and Appendix B contains a concise deriva-
tion of the propagators.

II. FIRST-PASSAGE PROPAGATION IN 1d

In this section we introduce the FPKMC algorithm using
the continuous limit of a random walk, i.e., a 1D continuous
diffusion �Weiner� process, i.e.,, as an illustrative example.
An extension to diffusion in dimensions higher than one will
be described in Sec. IV D.

With appropriate modifications, the FPKMC algorithm is
also applicable to simulations of other types of Markov ran-
dom walks, such as jump Markov processes on the con-
tinuum or jump Markov processes on a lattice. The defini-
tions and the algorithms to be presented here remain
essentially the same for discrete walks, but for discrete-
valued space x and/or time t the integrals appearing in the
discussion below correspond to sums over appropriate dis-
crete values. We defer to a future publication algorithmic
details specific to discrete random walks.

A. Single walker

To define the probability distributions to be employed in
the FPKMC algorithm, let us first consider a single continu-
ous random walk in one dimension �1d�. Let x0 and t0=0 be

the position and time origins of the walk and a be some other
�barrier� position on the line −��x��. Through a sequence
of random displacements the walker can at some future time
reach the barrier position a for the first time. Similarly, for a
closed interval �a ,b� such that a�x0�b, a first-passage
event occurs when the walker reaches either one of two bar-
riers a or b. The theory of first-passage processes �13� con-
cerns itself with finding the probability that the walker will
reach one of two barriers for the first time within time inter-
val �t , t+dt�. The relevant statistical distribution is the prob-
ability density c�x0,x , t� to find the walker surviving at time t
�having not reached either end of �a ,b�� within infinitesimal
interval �x ,x+dx� inside �a ,b�. By its definition, the integral

S�x0,t� = �
a

b

dx�c�x0,x�,t� �1�

is the total probability for the walker to survive by time t
regardless of its end position x. The splitting probability
j�a , t� is defined as the conditional probability that, given
that the first-passage event occurs at time t, the walker
reaches barrier a rather than b. For a random walk in one
dimension, j�a , t�+ j�b , t�=1 at all times. When the walk ori-
gin x0 is exactly in the center of interval �a ,b�, the splitting
probabilities are equal j�a , t�= j�b , t�= 1

2 and independent of
the first-passage time t. Finally, the no-passage �NP� prob-
ability distribution function �PDF� is defined as the condi-
tional probability to find the walker at position x at time t,
provided the first-passage event has not yet occurred,

g�x0,x,t� =
c�x0,x,t�
S�x0,t�

. �2�

We defer to Sec. IV the derivation of the probability distri-
butions introduced above. For now let us simply assume that
the functions S�x0 , t�, j�a , t�, and g�xo ,x , t� are available and
proceed to describe how they can be used to obtain statistical
samples of random walks in various situations.

First consider the statistics of continuous random walks
on the line −��x�� with no barriers. Assuming that the
walks start at position x0=0 and time t0=0, the PDF of
walker positions at time t�0 is given by the fundamental
solution of the diffusion equation

c��x,t� =
1

�4�Dt
exp�−

x2

4Dt
� , �3�

where D is the diffusion coefficient. The same statistics can
be obtained by randomly sampling from the first-passage
�FP� and no-passage �NP� distribution functions �propaga-
tors� as follows. Define an interval of length L1 centered on
the initial walker position x0=0. Draw a random number �
uniformly distributed on �0,1�, henceforth simply called a
“random number,” and solve S�L1 , t1�=� to sample the exit
time t1 out of interval �−

L1

2 ,
L1

2 �. If t1� t, use the NP distribu-
tion gL1

�x , t� to sample the walker position inside the inter-
val. If t1� t, use another random number to sample at which
end of interval L1 the walker exits at time t1. Define a new
interval of length L2 centered on the new walker position and
sample a new time t2 of first-passage out of interval L2 using
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the survival probability distribution S�L2 , t�. Continue until
the sum of first-passage times Tk=	i=1

k ti exceeds t. Use the
NP propagator gLk

�x , t−Tk−1� to sample the end position of
the walker. Proceeding in this manner, a random sample of
the walker position for any time t is obtained through a se-
quence of k�0 first-passage propagations ending in a single
no-passage propagation. Repeating such stochastic sampling
sequences many times, statistics of the end walker positions
can be used to reproduce the fundamental solution c��x , t� to
any desired accuracy. The length L of the propagation inter-
vals defines how many FP steps on average will be used to
reach time t but otherwise has no bearing on the resulting
statistics.

The above example illustrates the use of NP and FP dis-
tributions for sampling random walks on −��x��. The
resulting samples are statistically equivalent to the known
distribution c��x , t�. While not necessary in this particularly
simple case, the same sampling procedure based on the first-
passage statistics can be effectively employed in consider-
ably more complex situations, such as the one described be-
low where the simple fundamental solution c� no longer
applies.

B. Multiple walkers

Consider now multiple objects moving randomly and si-
multaneously on a properly defined space and time. The
walkers are assumed to walk independently of each other
until two of them find themselves at a distance equal to or
smaller than some interaction radius r �in one dimension the
interaction radius can be set to zero�. As was discussed in the
introduction, models of this kind represent a plethora of situ-
ations of practical interest. For our discussion here it is not
necessary to define what specifically happens when the walk-
ers reach the interaction radius; let us just assume that colli-
sions somehow affect propagation statistics of two �or more�
walkers involved in a collision.

The most straightforward numerical approach to modeling
such systems is to use random numbers to move the walkers
over space by small hops, one walker and one hop at a time,
and checking after each such hop if any of the walkers have
collided. Although widely used, this simple method is known
to become less and less efficient with the decreasing density
of walkers �14�. The idea of the method presented in this
section is to circumvent the need for the numerous small
hops by using the solutions for the first-passage statistics of a
single walker to efficiently bring the walkers to collisions.

Consider two simultaneous walks with the same time ori-
gin t=0 but different position origins x1 and x2 in one dimen-
sion, such that −��x1�x2��. Is it possible to obtain sta-
tistics of collisions between two walkers using a sampling
procedure similar to the sequence of FP and NP propagations
described in the previous section? At a first glance, the an-
swer should be negative because, in principle, a collision
between the walkers can occur at any time �at least in the
case of continuum diffusion�, thus altering the statistics of
both walkers. Hence, the simple solutions for first-passage
statistics of a single walker should no longer apply. Fortu-
nately, the trick of spatial protection enables the use of
single-walker propagations.

Let us, at t=0, surround the walkers by two nonoverlap-
ping segments L1 and L2 centered on the walk origins x1 and
x2. For example, make the ends of two segments coincide at
the midpoint between x1 and x2, as shown in Fig. 1. The key
observation that enables the use of single-walker propagators
is that, for as long as both walks remain inside their seg-
ments, they are protected from interactions with other walk-
ers. Hence, up until the time one of the walkers exits its
protective segment, the statistics of the two walks remain
independent of each other and the single-walker propagators
can be used. Let us now use the survival probabilities
S�L1 , t1� and S�L2 , t2� to randomly sample the first-passage
times t1 and t2 and find their minimum tmin=min
t1 , t2�. Say,
tmin= t1 which means that at time t= t1 walker 1 reaches one
of the ends of its protective segment L1, while walker 2
remains inside its protective segment L2. Let us randomly
select to which end of its protective segment walker 1 propa-
gates and advance the time clock by t1, tcª t1. Since walker
2 has not exited its protective segment L2,, its new position
can be obtained by sampling from the NP distribution
gL2

�x2,tc�. Now the walkers find themselves in new positions
x1 and x2 at time tc, and the propagation cycle can be re-
peated: new protective segments L1 and L2 are defined
around the new walker positions, two FP times are sampled
and compared, the time clock is advanced, and new walker
positions are sampled from appropriate FP and NP distribu-
tions.

Extension from two to N walkers is straightforward. One
starts by defining nonoverlapping protective segments
L1 ,L2 , . . . ,LN centered on each walker and sampling first-
passage times for every walker, 
t1 , t2 , . . . , tN�. For as long as

FIG. 1. �Color online� Simultaneous propagation of two walkers
using first-passage and no-passage distributions. The circles are
walker positions at different stages of propagation. �a� The walkers
are initially at positions x1 and x2 at time t=0. �b� The walkers are
protected by two nonoverlapping intervals L1 and L2 centered on
the walker positions. �c� Random samples of two first-passage times
t1 and t2 are obtained and compared. Because t1� t2, walker 1 is
moved from its initial position �open circle� to one of the ends of its
protective segment �filled circle�. At the same time, new position of
walker 2 inside its segment L2 is sampled from the NP distribution.
Time advances to tcª t1. �d� A new propagation cycle begins by
constructing nonoverlapping protective segments around new
walker positions. Although after the cycle illustrated by the �a�-�b�-
�c� sequence the walkers find each other slightly farther apart, the
next cycle is just as likely to bring them closer together.
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all walkers remain inside their protective segments, no
walker can affect the statistics of any other walker. There-
fore, the use of single-walker propagators guarantees correct
sampling of random walks at least until the next scheduled
propagation at time tmin=min
t1 , t2 , . . . , tN�. At this time,
walker i with the shortest exit time ti= tmin is FP-propagated
to one of the ends of its protective segment and positions of
all other N−1 walkers are sampled from appropriate NP dis-
tributions.

The sampling procedure described above allows a seem-
ingly small but important modification: rather than canceling
all exit times larger than tm and NP-sampling new positions
for the corresponding N−1 walkers, all or almost all of these
N−1 walkers can be left alone, protected inside their old
segments and scheduled for propagation at their previously
sampled exit times. First, the exit times sampled for all N
walkers are arranged in a priority queue ti� tk . . . � tm. Sec-
ond, walker i with the shortest exit time is FP propagated to
one of the ends of its protective segment Li. The NP propa-
gation is only necessary if and when the segment end where
walker i exits is also shared by a neighboring protective seg-
ment Lj. When this happens, independence of two affected
walks at later times is no longer assured because walker i
now intrudes in the protective segment of walker j. The im-
passe is resolved by sampling a new position for walker j at
time tmin using the NP distribution. Now that current posi-
tions of walkers i and j are decided, the time advances to tc
and walkers i and j are protected again in the space left
available for them by all other N−2 protective segments.
Two new exit times are sampled for walkers i and j, added to
the current time, and inserted in the queue. Proceeding in this
way, every cycle entails exactly one FP propagation and at
most one NP propagation, rather than N−1 NP propagations
as in the algorithm proposed in Ref. �9�.

That it is unnecessary to sample new exit times at t= tmin
for the walkers whose protective segments remain unaf-
fected, follows directly from the basic property of the ran-
dom walk as a memoryless stochastic process. In particular,
for any t1� t and x� �a ,b� the Chapman-Kolmogorov-
Smoluchowski identity holds,

c�x0,x,t� = �
a

b

dx�c�x0,x�,t1�c�x�,x,t − t1� .

Dividing both parts of the above equality by
S�x0 , t1�=�a

bdxc�x0 ,x , t� we obtain

c�x0,x,t�
S�x0,t1�

= �
a

b

dx�g�x0,x�,t1�c�x�,x,t − t1� .

The expression on the left-hand side is the probability den-
sity at time t of walks that started at t=0 and are known to
have survived at time t1. The expression on the right-hand
side defines the probability density of walks at time t that
have survived to time t1, when their positions x� inside the
interval were sampled from the NP distribution g�x0 ,x� , t1�,
and the walk was then restarted from the new position origin
x� and time origin t1. Integration of both sides of the above
equality over �a

bdx yields the corresponding equality for the
survival probabilities

S�x0,t�
S�x0,t1�

= �
a

b

dx�g�x0,x�,t1�S�x�,t − t1� .

The expression on the right is the probability to survive at
time t for a walk that has survived at t1 and whose new
position x� inside the interval was sampled from the NP dis-
tribution g�x0 ,x� , t1�. The expression on the left is the prob-
ability to survive at time t for a walk that started at t=0 and
survived at t1. The last two equalities mean that for all walk-
ers whose protective intervals are unaffected by the FP
propagation at t1, there is no need to sample new positions
and new exit times because the resulting distributions will be
identical to the presampled statistics. Thus, the two sampling
procedures—one used in Ref. �9� and one proposed here—
are statistically equivalent. Obviously, the new procedure is
much preferred since the cost of its sampling cycle is not
higher than the cost of the queue update, i.e., O�log N�,
whereas the cost of every sampling cycle in Ref. �9� is O�N�.

Just as in Ref. �9�, in the new algorithm all N walks are
initially protected and start from the same time origin t0=0.
The walker with the shortest exit time tmin is FP-propagated
and, perhaps, another neighboring walker is NP-propagated
to new positions. The global time clock advances to tmin and
the affected walkers are protected by new segments. One or
two new FP times are sampled, added to the new global time,
and inserted in the time queue. Over subsequent cycles, the
time origins of the N protected walkers will gradually be-
come desynchronized. Notwithstanding, statistical indepen-
dence of protected walkers is guaranteed up to the shortest
exit time in the current time queue. The resulting FPKMC
algorithm is asynchronous: every walker propagates within
its personal space �protective segment� and from its own po-
sition and time origins. Sooner or later, a series of FP and NP
propagations executed in this manner should bring a pair of
walkers close to their interaction radius.

As further discussed in Sec. III, efficiency of the FPKMC
algorithm demands special treatment of colliding pairs of
particles in order to prevent the lengths of their protective
segments from shrinking to zero as the walkers approach
each other. Namely, by allowing two protective segments to
overlap the possibility of a collision between any two neigh-
boring walkers can be included as a possible propagation
outcome. Such pair propagations entail sampling from an
appropriate Green’s function �pair propagator�, as explained
in Sec. IV C. Similar considerations apply to collisions be-
tween the walkers and the surfaces �e.g., absorbing or reflec-
tive boundaries�. Specifically, for a walker near a boundary
the segment L1 can be made to touch the boundary of the
domain so that one of the possible propagation outcomes
corresponds to a collision �absorption or reflection� with the
boundary.

Barring any inaccuracies in the single-particle or pair
propagators, the algorithm is as exact as a Monte Carlo al-
gorithm can be: for any number of walkers N, the statistics of
simultaneous random walks with collisions is correctly re-
produced in the limit of large number of independent Monte
Carlo simulations.

III. FPKMC ALGORITHM

Here we give a brief description of the algorithmic com-
ponents necessary for an FPKMC implementation.
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First, one has to obtain FP and NP propagators. The NP
propagators are needed when a walker propagates right on
or close to the boundary of a neighboring protective seg-
ment. In such a case, the new protective segment for the just
propagated walker will have very small �or even zero�
length. Consequently, the new time for FP propagation of the
“squeezed” walker is likely to be so short that the same
walker will be selected for the very next propagation again.
Because its protection is tightly constrained by the protective
segments of its neighbor walkers, the squeezed walker would
continue to perform a series of very short FP propagations,
resulting in little and, eventually, no advance of the global
clock. The solution to this inefficiency of the Achilles and
Turtle type is to identify which neighbor �or neighbors� limit
the space available for protection of the squeezed walker.
Then, NP propagation of the constraining inactive neighbor
walker�s� typically results in more equitable partitioning of
space with the squeezed walker. This is achieved at the cost
of canceling the earlier scheduled FP propagation of the con-
straining walker�s� and propagating it �them� using the NP
propagator to the current time. Proceeding in this manner,
every Monte Carlo cycle entails one FP propagation and,
possibly, one or few NP propagation, while all other walkers
stay inactive, scheduled for propagations at their own times
in the future. Calculation and efficient use of FP and NP
propagators are discussed in the next section and, in more
detail, in Appendixes A and B.

In FPKMC, FP and NP propagations replace numerous
short diffusive hops. At the same time, much of the compu-
tational effort is shifted to maintaining efficient space parti-
tioning among the protective domains of the walkers. It is
useful to observe that for the FPKMC method to work, space
can be partitioned in an arbitrary manner for as long as the
protective domains remain nonoverlapping. One can use this
freedom to simplify implementation and to maximize com-
putational efficiency. To minimize implementation effort, we
use particularly simple protective domains, i.e., centered seg-
ments �in one dimension� and centered hypercubes �in di-
mensions d�2�.

Generally, one would want to partition space for maxi-
mum computational efficiency, for example to maximize the
expectation time of the next FP propagation event. Optimal
space partitioning for arbitrary positions of the N walkers can
be accomplished in O�N� operations—we do it only spar-
ingly, such as in the beginning of each simulation run. Dur-
ing the run, the conditions of space sharing are inspected
only for the walkers that were just propagated, and their
immediate neighbors. Definition of optimal space partition-
ing depends on the relative mobilities of the walkers. In this
paper we only consider models in which all N walkers have
exactly the same mobility properties, i.e., the same diffusion
coefficient for the case of continuum random walks or the
same hopping rates for the case of discrete walks. Cases
when some walkers are more mobile than others will be con-
sidered in a future publication.

The FPKMC algorithm allows exact and efficient treat-
ment of particle collisions, by protecting and propagating
groups of walkers, e.g., pairs. As we describe in detail in
Sec. IV C, multiparticle propagators needed for such an

extension are particularly simple in 1d and for hypercube-
shaped walkers for d�2. The evolution of various diffusion-
reaction models is defined by what actually happens to col-
liding walkers—annihilation, coalescence, reflection, etc.—
and how the collisions are handled. The same details will
obviously affect the efficiency of FPKMC simulations but, in
our view, the ultimate purpose of the FPKMC method is to
enable efficient propagation of walkers to collisions whereas
handling of collisions events is outside of the method’s main
scope. Thus, FPKMC can be viewed as a universal accelera-
tor for particle diffusion or random walks by which the par-
ticles or walkers are brought to or close to collisions. We
leave it for the method’s users to define collision outcomes
and to develop accurate and efficient methods for collision
handling. To keep it simple, in this paper we consider only
annihilation and coalescence reactions leaving more compli-
cated collision scenarios for future publications.

In summary, the FPKMC algorithm entails the following
steps:

�1� Set the global time clock to zero. Construct nonover-
lapping protective domains around all walkers—use indi-
vidual protection for single walkers and group protection for
close pairs, as seems most efficient.

�2� Sample an exit time for each domain �in the case of
protected pairs this can mean a scheduled collision�. Put the
sampled event times in an event queue �e.g., implemented as
a heap�, so that the shortest time can be efficiently found.

�3� Find the shortest exit time and identify the corre-
sponding walker and domain. Sample the exit position for
the selected walker. If the new position corresponds to a
collision, take appropriate action.

�4� Check if any of the existing protective domains are
close to the new position of the particle. If necessary to make
more space available for protection of the propagated par-
ticle, use no-passage propagators to sample new locations for
the particles in the neighboring domains.

�5� Construct new protective domains for all particles that
changed their positions in steps �3� or �4�.

�6� Sample new event times for the particle�s� protected in
step �5�, as in step �2�.

�7� Insert the new event time�s� into the event queue. Go
to step �3�.

IV. PROPAGATORS

The FPKMC algorithm relies on the first-passage �FP�
and no-passage �NP� propagators to skip the numerous small
steps and to bring the walkers to collisions. For the algo-
rithm to be efficient, Monte Carlo sampling from these
propagators should not entail significant computational over-
head. In this section, the elementary mathematical theory
behind the propagators is presented along with explicit
propagator formulas for the case of continuous diffusion in
one dimension. We also discuss two methods appropriate for
Monte Carlo sampling from the FP and NP propagators.
Propagators suitable for efficient FPKMC simulations of N
simultaneous random walkers on lattices will be given in
future publications.
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A. Continuous space—continuous time

The problem we consider here is to find when and where
a particle performing a random walk �continuous diffusion
process� exits a specified domain. Figure 2 shows a sche-
matic of the setting.

Statistics of continuum random walks is equivalent to dif-
fusion. Consider a very large ensemble of noninteracting ran-
dom walkers starting simultaneously from the same origin.
The concentration of walkers in this ensemble is the solution
to the diffusion equation with a delta function at the walk
origin as the initial condition

D	c�x̄,t� =
�c�x̄,t�

�t
, c��
,t� = 0, c�x̄,0� = ��x̄ − x̄0� .

�4�

Here, D is the diffusion coefficient, c�x̄ , t� is the probability
density of finding the diffusing particle in an infinitesimal
volume around x̄ at time t given that it started at x̄0 at time
t=0.

The survival probability S�t� is defined as the probability
that by time t the particle has not crossed the boundary of 
.
S�t� can be found by integrating c over 
, or by integrating
the probability flux �D�c · n̂� out of 
,

S�t� = �



c�x̄,t�dx̄ = 1 − D�
0

t �
�


�c�x̄,�� · n̂dAd� , �5�

where dA is the element of the surface area of �
. Con-
versely, the exit probability per unit time �exit current� is

p�t� = − D�
�


�c�x̄,t� · n̂dA = −
�S�t�

�t
. �6�

The above boundary and volume-integral expressions are
equal by the Gauss’s theorem and the diffusion equation. The
probability density for the exit location on �
, i.e., the split-
ting probability is

j�x̄,t� = D
�c�x̄,t� · n̂x̄

− p�t�
, x̄ � �
 . �7�

The FP propagation consists of sampling from the exit-time
probability p�t� and the splitting probability j�x̄ , t�. The NP
propagation entails sampling from the probability density to
find the particle near x̄ at time t under the condition that the
particle has not exited 
 by time t,

g�x̄,t� =
c�x̄,t�
S�t�

. �8�

B. Propagators on a segment in one dimension

In one dimension, each protective domain is a line seg-
ment of length L. After translation and expressing the par-
ticle position in the units of L and expressing time in the
units of L2 /D, particle diffusion on segment �a ,b� is de-
scribed by the following equation on �0,1�:

�2c

�x2 =
�c

�t
�9�

with the boundary conditions c�0, t�=c�1, t�=0 and the ini-
tial condition c�x ,0�=��x−x0�, where x0 is the initial posi-
tion of the particle. Note that the same propagator can be
used for a particle near a boundary if the boundary is absorb-
ing, however, for reflective boundaries a von Neumann con-
dition on one of the sides of the domain is needed. We do not
discuss such a propagator here since we exclusively use pe-
riodic boundary conditions.

The solution to Eq. �9� can be written as the eigenfunction
expansion,

c�x,t� = 2	
k=1

�

sin�k�x�sin�k�x0�e−k2�2t. �10�

This series converges quickly for t1 /�2. An alternative is
to take advantage of the fundamental solution �Gaussian� and
express c�x̄ , t� as a sum of properly shifted images with al-
ternating positive and negative signs, as shown in Fig. 3,

FIG. 2. �Color online� Consider a random walk and a domain 

enclosing the walk origin. The walk can be thought to consist of
two parts: the part shown as a red solid line that is entirely con-
tained inside 
, and the rest of the walk shown as a black dashed
line.

−4 −3 −2 −1 0 1 2 3 4 5
−2
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0

1
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C
on

ce
nt

ra
tio

n

Resulting c(x,t)
Individual images

FIG. 3. The solution for the probability density c�x , t� is ob-
tained by summing the images, signed �positive or negative� copies
of the fundamental �Gaussian� solution placed at appropriate posi-
tions along the x axis. The individual images are shown as dashed
lines and the solid line is the resulting solution.
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c�x,t� =
1

�4�t
	

k=−�

�

�− 1�k

�exp�−
�x − �k +

1

2
+ �− 1�k�x0 −

1

2
���2

4t
� ,

�11�

which can also be derived from Eq. �10� through the Poisson
summation formula.

This expression converges quickly when t�
1
4 . The

needed FP and NP propagators can be now obtained by sub-
stituting either of these two solutions into Eqs. �6�–�8�. Fur-
ther technical details can be found in Appendix B.

C. Pair propagators in one dimension

In order to make the FPKMC algorithm more efficient
and to enable exact sampling of particle collisions, we pro-
tect close particle in pairs. Appropriate FP and NP propaga-
tors for the protected pairs should allow correct sampling of
the collision time and particle positions. Consider two par-
ticles at x and y on a unit segment �0,1� so that 0�x�y
�1. To obtain the needed propagators one can solve the
following two-dimensional �2D� diffusion problem

� �2c

�x2 +
�2c

�y2� =
�c

�t
,

with the boundary conditions c�t ,x=0,y�=c�t ,x ,y=1�
=c�t ,x ,x�=0 and the initial condition c�0,x ,y�
=��x−x0 ,y−y0�. This diffusion equation has to be solved on
the triangle shown in Fig. 4. Absorption of the pair at the
boundary x=y corresponds to a collision between the two
particles.

Rather than solving this two-dimensional problem, we
note that there is a simpler diffusion problem whose solution
may allow us to propagate the pair almost as efficiently.
Namely, we can use the solution of the same equation on any
domain that is entirely contained inside the triangle. To retain
the ability to sample collisions, a finite fraction of the x=y
line should be included in the new domain boundary. With
this in mind, let us introduce new variables for the center of
mass u= 1

�2
�x+y� and the difference v= 1

�2
�y−x� and define

the new domain as the maximal rectangle that can be in-

scribed in the triangle so that one of its sides coincides with
the collision line v=0 �that is x=y�. In these new coordi-
nates, the two-dimensional diffusion problem on the rect-
angle separates into two 1D problems, one for u and one for
v, with the absorbing boundary conditions on all rectangle
sides. This is convenient since one can use the same FP and
NP propagators already derived for a unit segment in one
dimension. First, one samples two exit times, one for
“walker” u and another for “walker” v. The exit time out of
the inscribed rectangle is the shorter of the two. The exit
coordinates are sampled using the splitting FP probability j
for the “walker” whose exit time is shorter and using the NP
propagator for the other “walker.” The two particles collide
when “walker” v exits to v=0. All other outcomes corre-
spond to pair propagation. Note that this algorithm preserves
exact statistics of diffusive propagation and collisions of the
protected pair. The sampled time increments are somewhat
smaller on average than could be achieved by using the full
triangular domain, which is an acceptable cost to pay for
eliminating the need to compute and sample from the more
complicated 2D propagators on the triangular domain.

D. Generalization to higher dimensions

For the case of isotropic diffusion in any number of di-
mensions m, the use of hyper-rectangles or hypercubes for
protecting the particles is convenient because the diffusion
equation separates into m one-dimensional diffusion equa-
tions, one for each Cartesian direction. The same holds for
anisotropic diffusion provided the edges of the protective
hyper-rectangles are oriented along the principal axes of the
diffusion tensor. In both cases the FP and NP probability
distributions for m dimensions are the products of m one-
dimensional distributions. Therefore, one can use the one-
dimensional propagators to sample time and location of exit
out of the protective hyper-rectangle. To do this, m exit times
are sampled from the corresponding m one-dimensional FP
propagators and the shortest of them, say tk, is taken as a
sample of the exit time. Then the splitting probability func-
tion j�tp� is used to sample the exit location for the Cartesian
direction k and the NP distributions at tk are sampled to ob-
tain the walker exit position for the remaining m−1 Carte-
sian directions.

A similar method can be used to propagate protected pairs
and possibly larger groups of particles. For example, for the
case of a pair of square-shaped particles protected by a
square in two dimensions, the change in variables is used to
transform the problem to diffusion on two rectangles, one for
each Cartesian coordinate. Accordingly, four one-
dimensional FP propagators are used to sample an exit time
tp and an exit dimension k in the transformed coordinates.
Then, three NP propagators are used to sample particle posi-
tions at the exit time tp in the three other dimensions. Using
the splitting probability function j�tp� one decides if the
sampled exit indicates a collision along one of the two Car-
tesian directions. If so, whether or not the pair has actually
collided is determined by the particle separation along the
other Cartesian direction. For a collision to occur, the latter
should be smaller than the sum of the half-widths of the
square-shaped particles.

0 1

y=1
x=

0

x=
y(x ,y ) x y0 0 0 0

FIG. 4. Two particles on a line protected by a single domain
�0,1�. The edges on the triangle are absorbing �Dirichlet� boundaries
for the diffusion problem, and correspond to three possible event
outcomes: x exits to the left, y exits to the right, and x and y collide.
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E. Sampling

Given a random number r uniformly distributed on r
� �0,1�, a sample first-passage time tp is obtained by solving
S�tp�=r or simply as tp=S−1�r�, where S�t� is the survival
probability function on domain 
. An exit location sample
x��
 can be obtained from the splitting probability density
j�x , tp�. Splitting probabilities for exit to the ends of a seg-
ment in one dimension are given by two numbers j1�tp� and
j2�tp�, j1�tp�+ j2�tp�=1. When the initial position of the
walker is at the center of a protective segment, the splitting
probabilities are equal and independent of the first-passage
time, j1= j2= 1

2 . Thus, using protective segments �or hyper-
rectangles� concentric with the initial particle positions is
particularly convenient. Given a NP probability density func-
tion g�x , t�, a sample of the no-passage position xnp at time t�
can be obtained by solving G�xnp ; t��=r, or G−1�r ; t��=xnp,
where r is a random number uniformly distributed on
r� �0,1�, G�xnp ; t��=�x1

xnpg�x , t��dx is the cumulative NP dis-
tribution function at time t�.

Even for the simple case of diffusion on a 1d segment
with two absorbing ends, no closed-form solution exist and
the FP and NP propagators are available only in the form of
series expansions. We have implemented and tested two
techniques for sampling FP and NP propagators, both taking
advantage of the fast convergence of the expansion series.
The first technique uses pre-tabulated propagators or, rather,
appropriate inverse functions for fast lookup and interpola-
tion. This method is particularly simple for the case of con-
tinuous diffusion on a segment in one dimension because the
propagators can be stored as one-dimensional �FP� or two-
dimensional �NP� tables �the time and position variables in
the propagator tables are stored in the units of L2 /D and L,
respectively�.

The second technique is rejection sampling that relies on
a converging series of upper and lower bounds to exactly
sample from the FP and NP distribution density functions at
a the cost of an occasional rejection. The needed series of
bounds is obtained by integrating the series expressions �10�
and �11� and observing that the terms in the resulting series
solutions for the propagators have alternating signs and ab-
solute values that monotonically decrease with the increasing
term order. Thus, subsequent partial sums of the alternating
series present an alternating sequence of increasingly tight
upper and lower bounds. Taking advantage of particularly
fast convergence of series �11� and �10� for short �t�

1
4 � and

long �t
1

�2 � times, respectively, it is possible to construct
very tight bounds to the exact distribution functions. As a
result, rejection sampling is efficient because rejections are
infrequent and it rarely takes more than two bound evalua-
tions to accept or reject a sample. This sampling technique is
especially useful when it is difficult or impossible to evaluate
and/or invert the cumulative probability distribution func-
tions. However, when the inverse distributions are available,
such as in the form of look-up tables, we found both table
lookup and rejection techniques similarly efficient.

Further technical details on computing and sampling the
1D propagators are given in Appendixes A and B.

V. COMPUTATIONAL TESTS ON ACCURACY
AND EFFICIENCY

In this section we apply the FPKMC algorithm to several
model diffusion-reaction problems as a way to validate the
method and compare its efficiency to traditional algorithms.
The first test is for one species annihilation in both one di-
mension and three dimensions, and the second test is for
two-species annihilation in three dimensions.

A. Annihilation in 1D

As a first test of our algorithm we study the kinetics of a
diffusion-controlled reaction of particle annihilation A
+A⇒0 in 1D. The simulation starts with a large number of
particles in a periodic box and proceeds with a steady decline
in the number of particles as they annihilate. The FPKMC
algorithm is ideally suited for this type of problems because
it adaptively adjusts the effective time step and hop size dur-
ing the course of the simulation. In the beginning of the
simulation the protective regions and the time steps between
successive events are small. As the simulation proceeds the
mean-free path increases and larger hops are taken. This al-
lows one to simulate the process all the way to complete
annihilation of all particles without expending significantly
more computational effort per particle at lower densities, in
stark contrast to the traditional algorithms.

Exactly how the new method’s efficiency compares to tra-
ditional hop-by-hop KMC with varying particle density de-
pends on dimensionality and, possibly, on whether or not the
walks are continuous or discrete. For the case of continuous
diffusion in 1D, simulation efficiency is manifestly indepen-
dent of particle separation. In higher dimensions, efficiency
of the FPKMC method diminishes with decreasing density.
Luckily, the need for efficient and accurate simulations of
diffusion-reaction processes is limited to dimensions d�4
because for d�4 the effect of correlations can be neglected
and the mean-field kinetics becomes accurate �15�.

Efficiency of Monte Carlo simulations of diffusion-
controlled annihilation or coalescence reactions can be fur-
ther enhanced by periodic replication. Although not directly
related to the methods discussed in this paper, periodic rep-
lication is especially efficient when used in combination with
the FPKMC method. In has been noted in the past �16� that
in the reactive systems where the number of particles
steadily decreases, the simulated kinetics of the late stages of
the reaction are not representative of the kinetics of interest.
This is due to an inevitable growth of correlations among
particles remaining in the box as the simulation progresses.
In annihilation and coalescence reactions, correlations de-
velop because the surviving particles are less likely to have
reacting neighbors in close proximity. This “correlation hole”
effect spaces the particles more evenly than in a random
configuration, thus affecting the distribution of times of par-
ticle collisions. If and when the growing correlation length
becomes comparable to the simulation box size, the kinetics
becomes distorted, as a finite-size effect. Reduction in the
number of surviving particles compounds the difficulties
making the tail kinetics noisy. For these reasons, the last 2–3
decades of simulated kinetics are typically discarded �16�.
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On the other hand, the first few decades of the simulated
kinetics are often discarded because they reflect more the
initial particle distribution �usually random� rather than the
reaction kinetics of interest. Combined with the usual limit
on the number of particles �typically 106�, these unwanted
behaviors limit to 4–6 decades the useful time interval over
which one can observe and quantify diffusion-reaction kinet-
ics.

Periodic replication in d dimensions works as follows
�17�. First, the simulation starts from its initial configuration
in a periodic box and proceeds as usual. Then, once the cor-
relation length grows comparable to the box size, the par-
ticles are synchronized to the current point in time and 2d

neighboring periodic replicas are combined in a new box
double the linear size of the old box, see Fig. 5. The simu-
lation restarts in the new box in which the particles that were
previously periodic image slaves of each other are now
treated independently. Such box doubling should be repeated
whenever the correlation length approaches a fraction of the
current box size. Given that correlations propagate by diffu-
sion, we estimate that the correlation length should grow as
��Dt where D is the diffusion coefficient. Thus, the volume
should be replicated whenever �Dt grows to become an ap-
preciable fraction of the linear box size L. Hence, the physi-
cal time t elapsed between replications should at least qua-
druple with each replication. Assuming that in the interval
between two box replications the number of surviving par-
ticles decreases as t−�, each replication increases the number
of particles by a factor 2d−2�.

Remarkably, for A+A⇒0 and A+A⇒A reactions in 1d,
�= 1

2 �18� and the doubling in the number of particles caused
by each replication is compensated by the reduction by half
caused by annihilation or coalescence taking place between
two replications. Thus, in these particular cases replications
do not cause the number of particles to grow and can con-
tinue indefinitely. Combined with the fact that FPKMC effi-
ciency does not depend on particles density in 1d, we can
simulate such processes to an arbitrarily long physical time,
as shown in Fig. 6.

In other cases when d−2��0, periodic replications will
result in increases in the number of particles. For example,
for the case d=2, �= 3

4 , the number of particles is expected to
double after two replications, whereas for the case d=3,
�=1, the number of particles will double after each replica-
tion. Therefore, sooner or later the number of particles will
grow too large to continue. Thus, rather than follow the com-

mon practice to start from a maximum size that fits into
memory and then simulate the reaction to the end, it may be
better to start from a small number of particles and let the
system grow by replications to a maximum size afforded by
the computer memory. Assuming that with FPKMC we can
handle simulations with at most 109 particles and that is safe
to start with just 103 particles in the box, this allows as many
as log2� 109

103 ��20 replications for the d=3, �=1 case and 40
replications for the d=2, �= 3

4 case. Thus, replications should
allow extension of the useful time horizon of such reaction-
diffusion simulations to 420 �12 decades of time� and 440 �24
decades of time�, respectively. Obviously, this recipe also
eliminates the earlier mentioned tail effects since correlations
are never allowed to catch up with the growing box size and
the number of particles in the end of the simulation is large2.

B. Annihilation in three dimensions

The next test is a simulation of a diffusion-controlled re-
action of particle annihilation A+A⇒0 in three dimensions.
Figure 7 compares the annihilation kinetics simulated using
the FPKMC method and a standard KMC algorithm in which
the particles are propagated by small hops �4,5,19�. Each
simulation starts with 8000 cube-shaped particles occupying
initially a volume fraction of 0.004 of the simulation cube
volume with periodic boundary conditions applied in all
three dimensions. The two kinetics are seen to be identical
within small statistical errors.

The greater efficiency of the FPKMC method allows
simulations of very large numbers of diffusing and reacting
particles at a modest computational effort. An example is
shown in Fig. 8 for the same annihilation reaction in three
dimensions but starting with 216 million particles. The reac-
tion completes in a few CPU days on a modest workstation.
By comparison, we estimate that it would take tens of CPU

2Even though the plots presented in Figs. 5–8 appear rather
smooth, FPKMC simulations faithfully account for and contain
wealth of statistical information on fluctuations and correlations in
the considered diffusion-reaction models. If desired, such statistics
can be extracted from the same simulations.

FIG. 5. Schematic of the periodic replication procedure. FIG. 6. Kinetics of A+A→0 annihilation reaction in 1d, using
replication. The inset is the logarithmic derivative of the kinetic
curve taken over the same time interval reproducing the theoretical
exponent �=0.5 for this reaction.
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years on the same workstation to complete this simulation
using the standard KMC algorithm 3.

Each step of the FPKMC algorithm requires more calcu-
lations than one step of the standard KMC algorithm. The
obvious overhead due to the need to sample from the more
complicated distributions is relatively minor whereas more
serious amount of computational effort in FPKMC is spent
on keeping track of near neighbor particles, space partition-
ing, and other tasks associated with particle protection, as
well as on maintaining the event queue after every event.
Note that all of these elements appear in other KMC algo-
rithms in one form or another, and therefore standard tech-
niques can be used. FPKMC codes used for simulations pre-
sented in this paper have not been extensively optimized
although some of the more obvious inefficiencies have been
addressed. Nevertheless, it should be of interest to compare
the net efficiency of the FPKMC simulations to that of the
standard KMC method in the units of CPU time per particle
collision.

A relevant comparison is given in Fig. 9, where the num-
ber of particle collisions �annihilation� per second of CPU
time is plotted as a function of particle density for two series
of simulations of A+A⇒0 annihilation reaction in 3d using
the FPKMC and the standard KMC algorithms. Each of the
two series consists of three simulations starting from the
same high initial volume fraction of particles of 0.05 and
ending at a much lower volume density 10−6 �the simulations
proceed from right to left�. Because in the beginning some of
the particles are very close to each other, it is necessary to
use very small hop sizes in order to ensure that collision
sequences are properly resolved. In the course of the simu-
lation the nearest-neighbor particle pairs progressively anni-
hilate and the time step gradually increases. Eventually, as
the average particle spacing gradually increases due to con-
tinued annihilation, the average number of hops between any
two collisions also increases and efficiency of the standard
method deteriorates inversely proportionally to the particle

volume fraction �density� �. At the same time, FPKMC au-
tomatically selects the propagation step size to meet the local
geometrical requirements, achieving an exact solution with-
out any tuning. Efficiency of the FPKMC algorithm is pro-
portional to �−1/3 throughout the whole range of simulated
particle densities. Thus, while FPKMC is competitive with
the standard method even at high particle densities, at a suf-
ficiently low density the new algorithm is certain to outper-
form the standard method.

C. Two-species annihilation in three dimensions

The last computational test we report in this paper is a
simulation of A+B⇒0 annihilation reaction in three dimen-
sions. In this reaction, particles do not interact with particles
of its own kind but annihilate on collisions with unlike par-
ticles. As has been first observed in Refs. �15,20�, when the

3The code we refer to here as “standard KMC algorithm” is Big-
Mac �4� that has been extensively used for simulations of various
diffusion-reaction processes. BigMac has not been specifically op-
timized for conditions of low particle density.

FIG. 7. Comparison between the standard KMC calculations
�crosses� and the first-passage KMC �circles� results for A+A→0
annihilation reaction in three dimensions. Each of the two curves is
the average over one thousand simulations each starting with 8000
particles.
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FIG. 8. �Color online� Simulated kinetics of A+A→0 reactions
in three dimensions. This curve is for a single run starting with
216�106 particles at a volume fraction of 0.1 �the reaction com-
pletes in 79 CPU hours�. The plot in the inset shows that even in an
FPKMC simulation the number of events �hops� per collision can
become large at very low particle densities.
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FIG. 9. Computational performance as a function of particle
density measured in six independent realizations of A+A→0 anni-
hilation reaction in 3d performed on a single CPU workstation us-
ing the standard KMC calculations with a finite hop distance �lower
symbols� and the FPKMC algorithm �upper symbols�. The dashed
and dotted lines are fitted lines with slope �1 for the standard KMC
calculations and slope � 1

3 for the new algorithm.
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numbers of A and B particles are close to the stoichiometry
�50:50�, this reaction does not follow the mean-field
asymptotic kinetics t−1 but rather t−3/4 �most other diffusion-
reaction systems follow the mean-field behavior for d�2�.
This peculiar scaling was attributed to the emergence and
growth of alternating A-rich and B-rich domains that effec-
tively limit the annihilation reactions to interdomain bound-
aries.

An important physical realization of such a situation is
recombination of vacancies and interstitials produced in
crystal by neutron, ion or electron irradiation �5�. Here we
limit our study to a model system in which particles A and B
are cubes with the same size and diffusion coefficients and
react only with particles of the opposite species. The slow
down caused by domain growth combined with steadily de-
creasing particle density makes standard KMC simulations
particularly inefficient which has so far prevented quantita-
tive investigations of reaction kinetics and domain geometry
in such systems, especially in 3d. The FPKMC method
handles this reaction with relative ease in arbitrary dimen-
sions. Figure 10 shows the geometry of a thin slice through
the domain configuration produced in a FPKMC simulation
of A+B⇒0 reaction in 3d starting with 106 particles �no
replication�.

VI. SUMMARY

We have developed the method of first-passage kinetic
Monte Carlo �FPKMC� for simulations of diffusion-reaction
processes. By partitioning the space into nonoverlapping
protective domains around each particle and/or particle pair,

the N-body problem of collisions among N Brownian par-
ticles or random walkers is factorized into N single-body
problems or, alternatively, K1 single body and K2 two-body
problems, K1+2K2=N. Rather than performing small diffu-
sional hops, exact solutions for first-passage and no-passage
statistics are used to propagate the particles inside the do-
mains. On each Monte Carlo cycle a single particle or a
single-particle pair is propagated to the boundary of its pro-
tective domain. This is sometimes followed by a no-passage
propagation of one or few neighboring particles or pairs.

The resulting algorithm is event-driven and asynchronous:
each protected particle or pair propagates in its own spatial
domain, from its own spatial and time origin and following
its own propagation time clock. The new method remains
efficient at low densities because only one or a few particles
are propagated on every cycle over distances close to the
interparticle spacing. The FPKMC method is exact for a
wide class of diffusion-reaction models in which Brownian
particles or random walkers do not interact until they collide
�hard-core models�. The accuracy and efficiency of the new
method is demonstrated in simulations of several well-
studied diffusion-reaction models that have previously pre-
sented serious computational challenges for Monte Carlo
simulations.

We would like to emphasize that the FPKMC method
focuses on bringing the particles close to collisions leaving
aside the nature of reactions taking place on collisions. Thus,
although statistics of first-passage processes finds its uses in
efficient handling of the reaction events �21�, such issues are
outside the scope of this paper in which we consider only the
simplest collision outcomes—annihilation and coalescence.
Extension of the FPKMC method to simulations of more
complicated reaction kinetics in which diffusional propaga-
tion takes place simultaneously with other competing sto-
chastic processes will be presented elsewhere.

The asynchronous and adaptive nature of the FPKMC al-
gorithm enables the method to effectively deal with stiff
diffusion-reaction problems in which rate processes with
vastly differing time scales coexist and compete. Examples
of such situations include the occurrence of fast diffusion of
adatoms versus slow diffusion of adatom clusters in crystal-
growth simulations and fast diffusion of interstitials versus
slow diffusion of vacancies in radiation damage in metals.
An extension of the FPKMC method to stiff reaction-
diffusion systems will be presented in a forthcoming publi-
cation.
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FIG. 10. �Color online� A thin slice through the domain structure
formed in a simulation of A+B→0 reaction in three dimensions.
The boundaries of the A-rich �top� and B-rich �bottom� domains are
identified with the sides of Voronoi polyhedra shared by unlike
particles. The two domains are complementary and fill the space
when brought together.
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APPENDIX A: SAMPLING FROM SERIES EXPANSIONS

The distributions sampled in FPKMC are given in the
form of series expansions. This appendix describes a general
rejection technique and its application to sampling from such
series expansions. In the following Appendix B, first-passage
�FP� and no-passage �NP� propagators suitable for this tech-
nique are derived for the case of continuous diffusion. FP
and NP propagators for discrete random walks on lattices
will be presented in forthcoming publications.

Here by a distribution c�x� we mean a function that is
non-negative everywhere and whose integral is bounded, i.e.,
c�x��0 and �c�x�dx��. Sampling from c�x� means draw-
ing random numbers x distributed according to the probabil-
ity density c�x� /�c�x��dx�. Rejection sampling is often used
when it is difficult to invert the cumulative distribution, e.g.,
to solve �=�xc�x��dx� for x, and, at the same time, a major-
ing distribution C�x� exists such that it is easy to sample and
C�x��c�x� for all x. Rejection sampling proceeds as follows:

�1� Let xtrial be a sample of C.
�2� Pick a uniformly distributed random number

0�y�C�xtrial�.
�3� If y�c�xtrial�, accept xtrial as a sample of c, otherwise

reject xtrial and go to step 1.
If �0

�C�t�dt /�0
�c�t�dt−1 is small, rejection is infrequent

and the resulting sampling is efficient while still exact in the
sense of sampling from the true distribution c�x , t�.

When the distribution c is available in the form of a con-
verging series expansion, the partial sums of the series can
be used in the acceptance/rejection test in step 2 of the re-
jection sampling algorithm above. Suppose c�x�=	k=0

� ck�x�,
define the partial sums Sm=	k=0

m ck�x� and assume that upper
and lower bounds Um and Lm of the remainder term are avail-
able, so that Lm�c�x�−Sm�Um and both bounds become
tighter with each added term. Then, in step 3 above, if
y�Sm+Lm the sample is accepted without evaluating any
terms beyond m. Conversely, if y�Sm+Um the sample is
rejected. If however Sm+Lm�y�Sm+Um no decision can be
made and the next order terms have to be calculated in order
to repeat the test with the same sample y but using Sm+1,
Um+1, and Lm+1. Especially simple is the case when the sign
of the remainder term c�x�−Sm is known; the sample is ac-
cepted if y�Sm and the remainder is positive and rejected if
y�Sm and the remainder is negative. Our experience with
the FPKMC algorithm suggests that the rejection procedure
requires computing only two terms on average before the
sample is accepted or rejected.

APPENDIX B: PROPAGATORS FOR CONTINUOUS
DIFFUSION

Here we derive the first passage and no-passage propaga-
tors suitable for rejection sampling on one-dimensional line
segments for the case of continuous diffusion.

1. First-passage propagator

Assume c�x , t� is the solution to the diffusion equation
given in section IV. From Eq. �6� it follows that the exit
probability per unit time is p�t�= �c

�x �0, t�− �c
�x �1, t�. Taking the

solution in the form of the image series suitable for short
times �c.f. Eq. �11�� we obtain

p�t� =
2�

�4�t
3 	

j=−�

�

�− 1� j

��� j +
1

2
�e−�j + 1/2�2/4t − � j −

1

2
�e−�j − 1/2�2/4t� .

Retaining the two most significant terms in this series yields
an approximate expression accurate for short times

ps�t� =
4�

�4�t
3e−1/16t.

Similarly, retaining the first term in the long-time expansion
�10�

p�t� = 	
k=1

�

2k� sin�k�x0��1 − �− 1�k�e−k2�2t,

and using x0=1 /2, we obtain an approximation that is accu-
rate for long times,

pl�t� = 4�e−�2t.

In turns out that ps� p and pl� p for all times t and, further-
more, ps and pl intersect at �0�0.0796. Thus, min�ps , pl� is a
tight majoring function for the true distribution p that it is
accurate to within 0.6% for all t, as shown in Fig. 11.

Defining the integrals

Fl��� = �
�

�

pl�t�dt =
4

�
e−�2�

Fs��� = �
0

�

ps�t�dt = 2�1 − erf� 1
�16t

�� ,

a sample of the exit time ttrial from the majoring distribution
is

ttrial = Fs
−1�r� =

1

16�erf−1�1 −
r

2
��2 ,

if r�Fs��0�, and
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FIG. 11. Comparison of one-term expansions versus full prob-
ability density. The inset shows the relative error of using only the
proposed majoring function without subsequent rejection sampling.
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ttrial = Fl
−1
„r − Fs��0�… = �0 − �−2 log

r − Fs��0�
Fl��0�

,

otherwise. Here, r is a random number uniformly distributed
on the segment 0�r�Fs��0�+Fl��0�. Using this trial value
of the exit time, it is now straightforward to employ there-
jection sampling technique described in Appendix A. For the
short-time series, the terms of the series alternate in sign and
decrease in magnitude with increasing m so that the partial
sums Sm provide an alternating sequence of upper and lower
bounds. The same holds for the long-time series, provided
�trial�

1
18�2 �0.0056. Depending on the value of ttrial, one or

the other series converges faster. It is possible to choose
among the two alternatives by comparing ttrial to �0. How-
ever, it is more efficient to use a different switchover time
tswitch that optimizes the computational cost of the sampling
routine. For our implementation tswitch�0.033 turned out to
be optimal.

2. No-passage propagator

The no-passage propagator is the distribution density of
particle positions at time t conditioned on the fact that the
particle has not reached the boundary of its protective do-
main by that time. As is the case for the FP propagator de-
scribed above, sampling from the NP distribution is most
efficiently done using two different expansion series at short
times and at long times. Using the sampling procedure de-
scribed below, rejections are infrequent �less than 1%� re-
quiring on average less than two terms in the series expan-
sions to accept or reject the sample.

For short times, the probability density c�x , t� is best rep-
resented by the image sum �c.f. Eq. �11��. The m=0 term of
this expansion is the fundamental solution C�x , t� for diffu-
sion on −��x��. C�x , t� is a simple overestimator
C�x , t��c�x , t� that can be used to obtain a trial sample for
the particle position xtrial on �0,1�. Since C�x , t� is a
Gaussian, a trial position can be obtained by scaling and
translation of a normally distributed random number rn,
xtrial= �1+rn

�8t� /2 �xtrial can occasionally fall outside �0,1�
in which case it is discarded�. With a trial position so se-
lected, the partial sums Sm of the image series for concentra-
tion c�x , t� are used as an alternating sequence of increas-
ingly tight upper and lower bounds convenient for rejection
sampling, as described in Appendix A.

At long times, as an approximation for the particle
position distribution it seems reasonable to take the first
term of the eigenfunction expansion �c.f. Eq. �10��,
c̃�x , t�=sin�k�x�e−�2t. Although this function is smaller than
the full solution c�x , t� for some x, it is still possible to use it
to construct a tight majoring function C�x , t��c�x , t�
by multiplying c̃ with a factor 1+g�t�, so that
C�x , t�= �1+g�t��c̃�x , t��c�x , t�, for all x. One possible
choice for g�t� is

g =
e−8�2t

1 − e−16�2t
.

This particular factor was derived by taking the absolute
value of every term in the eigenfunction series expansion,
noting that sin x�1 and that x2�x for x�1, and replacing
the square in the exponential by a linear function. The result-
ing sum is a geometric sum and can be evaluated analyti-
cally.

Sampling xtrial from the majoring distribution is then per-
formed by picking a uniformly distributed random number
−1�r�1, and setting xtrial=

1
2 + 1

2�arccos r. In addition to
xtrial we also need an estimate for the remainder of the long-
time series. Following a derivation similar to that of g, we
find that the function

dm = 2
e−�2t�2m + 3�2

1 − e−4�2t
,

bounds the series remainder so that cm�x , t�−dm�c�x , t�
�cm�x , t�+dm. The so defined C�x , t� and dm can be em-
ployed for rejection sampling. To reduce the cost, when it is
necessary to compute the higher order terms of the series
expansion for c�x , t�, we re-use the already calculated time
exponentials which requires a few multiplications for each
iteration. The time tswitch for switchover from the short-time
series to the long-time series can be selected to optimize the
cost of rejection sampling, similar to the FP propagators de-
scribed in the preceding section.

We note in passing that still tighter bounding functions g
and dm can be derived by replacing the infinite sum in c�x , t�
with a majoring integral. However the resulting expressions
contain the error function, erf�x�, which can be expensive to
numerically evaluate.

�1� M. Strobel, K.-H. Heinig, and W. Möller, Phys. Rev. B 64,
245422 �2001�.

�2� J. S. Reese, S. Raimondeau, and D. G. Vlachos, J. Comput.
Phys. 173, 302 �2001�.

�3� M. Biehl, in Int. Series of Numerical Mathematics, edited by
A. Voigt �Birkhäuser, Basel, 2005�, Vol. 149, pp. 3–18.

�4� S. K. Theiss, M.-J. Caturla, M. D. Johnson, J. Zhu, T. J. Le-
nosky, B. Sadigh, and T. Diaz de la Rubia, Thin Solid Films
365, 219 �2000�.

�5� C. Domain, C. S. Becquart, and L. Malerba, J. Nucl. Mater.

335, 121 �2004�.
�6� D. P. Tolle and N. Le Novere, Current Bioinformatics 1, 315

�2006�.
�7� J. S. van Zon and P. R. ten Wolde, J. Chem. Phys. 123, 234910

�2005�.
�8� S. J. Plimpton and A. Slepoy, J. Phys.: Conf. Ser. 16, 305

�2005�.
�9� M. H. Kalos, D. Levesque, and L. Verlet, Phys. Rev. A 9, 2178

�1974�.
�10� J. Dalla Torre, J.-L. Bocquet, N. V. Doan, E. Adam, and A.

FIRST-PASSAGE KINETIC MONTE CARLO METHOD PHYSICAL REVIEW E 80, 066701 �2009�

066701-13



Barbu, Philos. Mag. 85, 549 �2005�.
�11� T. Opplestrup, V. V. Bulatov, G. H. Gilmer, M. H. Kalos, and

B. Sadigh, Phys. Rev. Lett. 97, 230602 �2006�.
�12� A. Donev, Simulation 85, 229 �2009�.
�13� S. Redner, A Guide to First-Passage Processes �Cambridge

University Press, Cambridge, 2001�.
�14� D. ben-Avraham, J. Chem. Phys. 88, 941 �1988�.
�15� F. Leyvraz and S. Redner, Phys. Rev. Lett. 66, 2168 �1991�.

�16� Y. Shafrir and D. ben-Avraham, Phys. Lett. A, 278, 184
�2001�.

�17� M. Smith and T. Matsoukas, Chem. Eng. Sci. 53, 1777 �1998�.
�18� D. Zhong, R. Dawkins, and D. ben-Avraham, Phys. Rev. E,

67, 040101�R� �2003�.
�19� S. S. Andrews and D. Bray, Phys. Biol. 1, 137 �2004�.
�20� D. Toussaint and F. Wilczek, J. Chem. Phys. 78, 2642 �1983�.
�21� H. Kim and K. J. Shin, Phys. Rev. Lett. 82, 1578 �1999�.

OPPELSTRUP et al. PHYSICAL REVIEW E 80, 066701 �2009�

066701-14


